Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans.
نویسندگان
چکیده
Cryptococcus neoformans is a pathogenic fungus with a defined sexual cycle involving haploid MATalpha and MATa cells. Interestingly, MATalpha strains are more common, are more virulent than congenic MATa strains, and undergo haploid fruiting in response to nitrogen limitation or MATa cells. Three genes encoding the MFalpha pheromone were identified in the MATalpha mating-type locus and shown to be transcriptionally induced by limiting nutrients and coculture with MATa cells. The MFalpha1, MFalpha2, and MFalpha3 genes were mutated, individually and in combination. MATalpha strains lacking MFalpha pheromone failed to induce morphological changes in MATa cells. Pheromoneless MATalpha mutants were fusion and mating impaired but not sterile and mated at approximately 1% the wild-type level. The pheromoneless MATalpha mutants were also partially defective in haploid fruiting, and overexpression of MFalpha pheromone enhanced haploid fruiting. Overexpression of MFa pheromone also enhanced haploid fruiting of MATalpha cells and stimulated conjugation tube formation in MATa cells. A conserved G-protein activated mitogen-activated protein kinase signaling pathway was found to be required for both induction and response to mating pheromones. The MFalpha pheromone was not essential for virulence of C. neoformans but does contribute to the overall virulence composite. These studies define paracrine and autocrine pheromone response pathways that signal mating and differentiation of this pathogenic fungus.
منابع مشابه
A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans.
Fungal pheromones function during the initial recognition stage of the mating process. One type of peptide pheromone identified in ascomycetes and basidiomycetes terminates in a conserved CAAX motif and requires extensive posttranslational modifications to become mature and active. A well-studied representative is the a-factor of Saccharomyces cerevisiae. Unlike the typical secretory pathway ut...
متن کاملAllelic Exchange of Pheromones and Their Receptors Reprograms Sexual Identity in Cryptococcus neoformans
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of comp...
متن کاملAdenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade.
The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which ...
متن کاملDirect PCR of Cryptococcus neoformans MATalpha and MATa pheromones to determine mating type, ploidy, and variety: a tool for epidemiological and molecular pathogenesis studies.
Cryptococcus neoformans MATalpha and MATa pheromones were amplified by direct PCR. Nucleotide sequence analyses revealed unique restriction enzyme sites. Sixty strains were used to devise a restriction fragment length polymorphism typing scheme that yielded three variety-specific patterns. Additionally, pheromone-specific PCR allowed easier identification of diploid C. neoformans strains than f...
متن کاملCanonical Heterotrimeric G Proteins Regulating Mating and Virulence of Cryptococcus neoformans□D
Perturbation of pheromone signaling modulates not only mating but also virulence in Cryptococcus neoformans, an opportunistic human pathogen known to encode three G , one G , and two G subunit proteins. We have found that G s Gpa2 and Gpa3 exhibit shared and distinct roles in regulating pheromone responses and mating. Gpa2 interacted with the pheromone receptor homolog Ste3 , G subunit Gpb1, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2002